Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from Methylococcus capsulatus (Bath).

نویسندگان

  • Suki Balendra
  • Claire Lesieur
  • Thomas J Smith
  • Howard Dalton
چکیده

The soluble methane monooxygenase (sMMO) complex from Methylococcus capsulatus (Bath) catalyses oxygen- and NAD(P)H-dependent oxygenation of methane, propene, and other substrates. Whole-complex sMMO oxygenase activity requires all three sMMO components: the hydroxylase, the reductase, and protein B. Also, in the presence of hydrogen peroxide, the hydroxylase alone catalyzes substrate oxygenation via the peroxide shunt reaction. We investigated the effect of amine cross-linking on hydroxylase activity to probe the role of a gross conformational change that occurs in the hydroxylase upon binding of the other protein components. The cross-linker inhibited hydroxylase activity in the whole complex, but this effect was due to covalent modification of primary amine groups rather than cross-linking. Covalent modification of arginine side-chains on the hydroxylase had a similar effect, but, most remarkably, neither form of modification affected the activity of the hydroxylase via the peroxide shunt reaction. It was shown that covalent modification of positively charged groups on the hydroxylase, which occurred at multiple sites, interfered with its physical and functional interactions with protein B and with the passage of electrons from the reductase. These results indicate that protein B and the reductase of the sMMO complex interact via positively charged groups on the surface of the hydroxylase to induce a conformational change that is necessary for delivery of electrons into the active site of the hydroxylase. Modification of positively charged groups on protein B had no effect on its function, consistent with the hypothesis that positively charged groups on the hydroxylase interact with negative charges on protein B. Thus, we have discovered a means of specifically inactivating the interactions between the sMMO complex while preserving the catalytic activity of the hydroxylase active site which provides a new method of studying intercomponent interactions within sMMO.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron Transfer Control in Soluble Methane Monooxygenase

The hydroxylation or epoxidation of hydrocarbons by bacterial multicomponent monooxygenases (BMMs) requires the interplay of three or four protein components. How component protein interactions control catalysis, however, is not well understood. In particular, the binding sites of the reductase components on the surface of their cognate hydroxylases and the role(s) that the regulatory proteins ...

متن کامل

Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath.

A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 micromol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidati...

متن کامل

Functional expression in Escherichia coli of proteins B and C from soluble methane monooxygenase of Methylococcus capsulatus (Bath).

Methylococcus capsulatus (Bath) uses a soluble methane monooxygenase (sMMO) to catalyse the oxidation of methane to methanol. sMMO is comprised of three components; A, B and C. Protein C (the reductase) transfers electrons from NADH to protein A (the hydroxylase) which contains the active site, and protein B regulates this electron flow. The five genes encoding the sMMO proteins and their subun...

متن کامل

Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath).

Soluble methane monooxygenase (sMMO) has been studied intensively to understand the mechanism by which it catalyzes the remarkable oxidation of methane to methanol. The cluster of genes that encode for the three characterized protein components of sMMO (MMOH, MMOB, and MMOR) contains an additional open reading frame (orfY) of unknown function. In the present study, MMOD, the protein encoded by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2002